Given expression is
∑n=1∞(x-4)n-13nn
Let
un=(x-4)n-13nn
then
un+1=(x-4)n3n+1(n+1)
Then
limn→∞un+1un=limn→∞(x-4)3n+1(n+1)×3nn(x-4)n-1=limn→∞n(n+1)×(x-4)3=(x-4)3
For convergence
x-43<1=|x-4|<3 ∵x<R, R is radius of convergence.=-3≤x-4<3=-3+4≤x-4+4<3+4=1≤x<7
So interval of convergence is [1,7)
and radius of convergence 3.