Solve simultaneous equation dx/dt=3x+5y , dy/dt=-x-y , x=5 , y=-3
We need to solve the given simultaneous equations,
dxdt=3x+5ydydt=-x-y
at x=5, y=-3
Let, ddt=D
Thus the equation transforms to:
dxdt=3x+5y⇒Dx=3x+5y⇒Dx-3x-5y=0⇒D-3x-5y=0 ---1
dydt=-x-y⇒Dy=-x-y⇒x+Dy+y=0⇒x+D+1y=0 ---2
Solving equation 1, we get
⇒D-3x-5y=0⇒x=5yD-3
By substituting the value of x in equation 2, we get
x+D+1y=0⇒5yD-3+D+1y=0⇒5y+D-3D+1y=0⇒5y+D2-2D-3y=0⇒D2-2D-3+5y=0⇒D2-2D+2y=0⇒y''t-2y't+2yt=0
Auxilliary equation for above differential equation is: m2-2m+2=0⇒m=--2±-22-41221=2±-42⇒m=1±i
⇒y(t)=(C1sint+C2cost)et
Using equation 2, we can write,
x=-dydt-y ---3
We have,
⇒yt=C1sint+C2costet
⇒dydt=ddtC1sint+C2costet⇒dydt=etddtC1sint+C2cost+C1sint+C2costddtet⇒dydt=C1cost-C2sintet+C1sint+C2costet⇒dydt=C1cost+sint+C2cost-sintet
substituting the value of y and dydt in equation 3, we get
⇒x=-C1cost+sint+C2cost-sintet-C1sint+C2costet⇒x(t)=-(C1cost+2sint+C22cost-sint)et
We have obtained xt and yt.NOTE: We are given the initial condition as x=5,y=-3. But we would need these x and y value at a particular value of t in order to find the value of constants C1 and C2.