In this question you can find the value of 'x' . Firstly equate all x's in one sides and after that find 'x'.
$Considerthegivenequation\phantom{\rule{0ex}{0ex}}6x-5=7-9x\phantom{\rule{0ex}{0ex}}Adding\text{'}9x\text{'}onbothsides,weget\phantom{\rule{0ex}{0ex}}6x-5+9x=7-9x+9x\phantom{\rule{0ex}{0ex}}15x-5=7\phantom{\rule{0ex}{0ex}}Adding\text{'}5\text{'}onbothsides,weget\phantom{\rule{0ex}{0ex}}15x-5+5=7+5\phantom{\rule{0ex}{0ex}}15x=12\phantom{\rule{0ex}{0ex}}Divideby\text{'}15\text{'}onbothsides,weget\phantom{\rule{0ex}{0ex}}\frac{15x}{15}=\frac{12}{15}\phantom{\rule{0ex}{0ex}}\Rightarrow x=\frac{4}{5}$
$\mathit{H}\mathit{e}\mathit{n}\mathit{c}\mathit{e}\mathbf{,}\mathbf{}\mathit{x}\mathbf{=}\frac{\mathbf{4}}{\mathbf{5}}\mathbf{.}$