here Thirteen cards are dealt on the table from a deck of standard playing cards.
here total 52 cards in decks
total 4 aces cards in deck
now here use hypergeometric distribution
$p\left(X\right)=\frac{\left(\begin{array}{c}S\\ X\end{array}\right)\left(\begin{array}{c}N-S\\ N-x\end{array}\right)}{\left(\begin{array}{c}N\\ n\end{array}\right)}$
n= #sample = 13
N =#population = 52
X= #favorable in sample
N= #favorable in population
there is only one ace of spade , one ace of heart
Now ,
Required Probability
$=\frac{\left(\begin{array}{c}1\\ 1\end{array}\right)\left(\begin{array}{c}1\\ 1\end{array}\right)\left(\begin{array}{c}50\\ 11\end{array}\right)}{\left(\begin{array}{c}52\\ 13\end{array}\right)}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathbf{=}\mathbf{0}\mathbf{.}\mathbf{058823}\mathbf{}\mathbf{}\mathbf{}\mathit{a}\mathit{n}\mathit{s}$